Ram Choice

Choose a mO or mA ram

- If the increase litter size compared with present flock is modest i.e. 0.2 to 0.4 lambs
- The number of triplets produced by the crossbred offspring will depend too on the performance of their dams and could vary from 10% at a litter size average of 1.75 to 20% at an average of 2.0
- Quadruplets and higher litter sizes will be absent/minimal.

Choose an mB ram

- If the desired increase in litter size is greater than 0.4 lambs
- The actual increase will be due to a single gene and be approximately 0.4 to 0.5 lambs
- The gene carrying the mutation is on the X chromosome so all female offspring will carry the mutation
- The latter will mean that the crossbred performance will be relatively uniform but with a significant number of triplets and probably some quadruplets.

Choose an mC ram

- Only if you want a large increase in litter size and feel able to deal with significant numbers of multiple births!
- These rams are still available
- Only half of the females will carry the mutation so the offspring will vary in performance
- Crossbreds carrying the mutation could produce large litters.

In Ram Choice also note the following.

- The above indicates how rams in the Cambridge breed can be selected for crossbreeding on the basis of their potential prolificacy only.
- It has to be recognised that there is some variation within the groups and consequent overlaps in prolificacy performance
- There is no evidence at present that the mutations are linked to other important traits such as:

colostrum and milk production

growth and conformation

DNA Genotyping of Cambridge Ewes

- DNA genotyping of ewes in the breed has revealed the presence of 3 mutations that effect ovulation rate
- The effect varies but all three are associated with the occurrence of large litters of 4 or more lambs.
- In contrast the ewes without a mutation produce a max of 3 lambs.
- Within each group there is still year to year and sheep to sheep variation (see table below)

Mutation	Mean Litter size	Profile of Litter Sizes (% of total)				
	The state of the same	1	2	3	4	5
None	2.2	9	60	31	0	0
GDF9G7A	2.4			THEMAN	19/19/50	Name of
BMP15	3.0	5	3	41	25	6
GDF9G8	3.3	4	14	32	29	21

DNA Genotyping of Rams

- Rams are now being genotyped too to determine their prolificacy potential
- Rams are categorised into 4 groups corresponding to the mutations present as shown in the table below

Group	Mutation			
m0	none			
mA	GDF9G7A			
m0	BMP15			
mC	GDF9G8			

 DNA testing helps the purchaser select the ram that best suits the objective of producing high performance crossbred ewes that are prolific but have a minimum number of large litters